At  $25\,^o C$, the dissociation constant of a base $BOH$ is $1.0 \times {10^{ - 12}}$. The concentration of Hydroxyl ions in $0.01\, M$ aqueous solution of the base would be

  • [AIPMT 2005]
  • A

    $2.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$

  • B

    $1.0 \times {10^{ - 5}}\,mol\;{L^{ - 1}}$

  • C

    $1.0 \times {10^{ - 6}}\,mol\,{L^{ - 1}}$

  • D

    $1.0 \times {10^{ - 7}}\,mol\;{L^{ - 1}}$

Similar Questions

The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and  $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.

Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The  $pK _{ b }$ of ammonia solution is $4.75$

What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )

A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$

$0.1$ $mol$ of $H_2S(g)$ is kept in a $0.4$ litre vessel at $1000\,K$. For the reaction -
$2{H_2}S(g)\,\rightleftharpoons\,2{H_2}(g)\, + \,{S_2}(g)\,;\,{K_c} = {10^{ - 6}}\% $ dissociation of $H_2S$ is.......$\%$